Dynamics of carbon sequestration in a coastal wetland using radiocarbon measurements

نویسندگان

  • Yonghoon Choi
  • Yang Wang
چکیده

[1] Coastal wetlands are sensitive to global climate change and may play an important role in the global carbon cycle. However, the dynamics of carbon (C) cycling in coastal wetlands and its response to sea level change associated with global warming is still poorly understood. In this study, we estimated the long-term and short-term rates of C accumulation, using C and C isotopic measurements of peat cores collected along a soil chronosequence, in a coastal wetland in north Florida. The long-term C accumulation rates determined by examining the C inventory and the radioactive decay of radiocarbon as a function of depth in the peat cores decrease with time from 130 ± 9 g C/m/yr over the last century to 13 ± 2 g C/m/yr over the millennium timescale. The short-term C accumulation rates estimated by examining the differences in the radiocarbon and C contents of the surfacial peat between archived (1985, 1988) and present (1996 and 1997) samples range from 42 to 193 g C/m/yr in low marsh, from 18 to 184 g C/m/yr in middle marsh, and from 50 to 181 g C/m/yr in high marsh. The high end-values of our estimated short-term C accumulation rates are comparable to the estimated rates of C sequestration in coastal wetlands reported by Chmura et al. [2003], but are significantly higher than our estimated long-term rates in the marshes and are also much higher than the published rates of C sequestration in northern peatlands. The higher recent rates of C accumulation in coastal marshes, in comparison with the longer-term rates, are due to slow but continuous decomposition of organic matter in the peat over time. However, other factors such as increased primary production in the coastal wetland over the last decades or century, due to a rise in mean sea level and/or CO2 and nitrogen fertilization effect, could also have contributed to the large difference between the recent and longerterm rates. Our data indicate that salt marshes in this area have been and continue to be a sink for atmospheric carbon dioxide. Because of higher rates of C sequestration and lower CH4 emissions, coastal wetlands could be more valuable C sinks per unit area than other ecosystems in a warmer world.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of sedimentation on wetland carbon sequestration in an agricultural watershed.

Landscape redistribution of soil C is common within agricultural ecosystems. Little is known about the effects of upland sediment deposition on C dynamics within riparian wetlands. To assess sedimentation impact, we obtained profile samples of wetland soil and used the combination of (137)Cs, (210)Pb, and (14)C chronological markers to determine rates of C sequestration and mineral deposition o...

متن کامل

Modeling the impacts of climate variability and hurricane on carbon sequestration in a coastal forested wetland in South Carolina

The impacts of hurricane disturbance and climate variability on carbon dynamics in a coastal forested wetland in South Carolina of USA were simulated using the Forest-DNDC model with a spatially explicit approach. The model was validated using the measured biomass before and after Hurricane Hugo and the biomass inventories in 2006 and 2007, showed that the ForestDNDC model was applicable for es...

متن کامل

Assessment of Blue Carbon Storage by Baja California (Mexico) Tidal Wetlands and Evidence for Wetland Stability in the Face of Anthropogenic and Climatic Impacts

Although saline tidal wetlands cover less than a fraction of one percent of the earth's surface (~0.01%), they efficiently sequester organic carbon due to high rates of primary production coupled with surfaces that aggrade in response to sea level rise. Here, we report on multi-decadal changes (1972-2008) in the extent of tidal marshes and mangroves, and characterize soil carbon density and sou...

متن کامل

Uncertainties and novel prospects in the study of the soil carbon dynamics.

Establishment of the Kyoto Protocol has resulted in an effort to look towards living biomass and soils for carbon sequestration. In order for carbon credits to be meaningful, sustained carbon sequestration for decades or longer is required. It has been speculated that improved land management could result in sequestration of a substantial amount of carbon in soils within several decades and the...

متن کامل

Tidal effects on net ecosystem exchange of carbon in an estuarine wetland

One year of continuous data from two eddy-flux towers established along an elevation gradient in coastal Shanghai was analyzed to evaluate the tidal effect on carbon flux (Fc) over an estuarine wetland. The measured wavelet spectra and cospectra of Fc and other environmental factors demonstrated that the dynamics of Fc at both sites exhibited a tidal-driven pattern with obvious characteristics ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004